Phase behavior of nonadditive hard-sphere mixtures
نویسندگان
چکیده
منابع مشابه
Crystallization and phase separation in nonadditive binary hard-sphere mixtures
We calculate for the first time the full phase diagram of an asymmetric nonadditivehard-sphere mixture. The nonadditivity strongly affects the crystallization and the fluid-fluid phase separation. The global topology of the phase diagram is controlled by an effective size ratio y(eff), while the fluid-solid coexistence scales with the depth of the effective potential well.
متن کاملTheory of asymmetric nonadditive binary hard-sphere mixtures.
It is shown that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for nonadditive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, s...
متن کاملNonadditive hard-sphere fluid mixtures: a simple analytical theory.
We construct a nonperturbative fully analytical approximation for the thermodynamics and the structure of nonadditive hard-sphere fluid mixtures. The method essentially lies in a heuristic extension of the Percus-Yevick solution for additive hard spheres. Extensive comparison with Monte Carlo simulation data shows a generally good agreement, especially in the case of like-like radial distributi...
متن کاملPhase Behavior and Structure of Binary Hard-Sphere Mixtures
By integrating out the degrees of freedom of the small spheres in a binary mixture of large and small hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-body (depletion potential) contribution to this effective Hamiltonian in simulations, we find stable fluid-solid and both metastable fluid-fluid and solid-solid coexistence in a mixture with size rati...
متن کاملOrientational and phase-coexistence behaviour of hard rod-sphere mixtures
Results are presented from Monte Carlo simulations of bulk mixtures of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadths of the rods. For sphere number-concentrations of 50% and lower, compression of the isotropic fluid results in formation of a homogeneous (i.e. compositionally mixed) nematic phase. The volume fraction of this iso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1998
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.58.7523